Numerical and experimental study of AZ 31 - O magnesium alloy warm sheet forming

نویسندگان

  • Zhigang LIU
  • Elisabeth MASSONI
چکیده

Lightweight materials have been studied widely at present. Because weight reduction while maintaining functional requirements is one of the major goals in industries in order to save materials, energy and costs, etc. As the lightest structural alloys, magnesium alloys offer great potential to displace the most commonly used materials, because its density is about 2/3 of aluminum and 1/4 of steel. However, due to HCP (Hexagonal Close-Packed) crystal structure, magnesium provides only limited ductility for cold forming operations. But its formability improved obviously at elevated temperature. In this project, the material is AZ31O magnesium alloy sheet, including 3% aluminum and 1% zinc. The sheet thickness is 1.2mm. The thermal ductility and formability of AZ31 are studied deeply by experiments and finite element simulations. Warm tensile tests are performed in laboratory to study ductility of AZ31 magnesium alloy, the temperature and strain rate influence are included in all tests. The test reliability is validated at the beginning. The analysis result shows that the ductility is enhanced with temperature increasing and strain rate decreasing, the hardening and softening phenomenon both happen in the forming tests, the softening phenomenon is obvious with temperature increasing. Moreover, three kinds of specimens are used with various orientations with respect to the rolling direction in order to study material anisotropy property. The experiment results obviously indicate that the material shows anisotropy in lower temperature, but anisotropy decreases with temperature increasing. The anisotropy is much less obvious over 200C. So, the anisotropic property is not considered in this project. The true stress and true strain data are derived from the load stroke data initially getting from experiment. The constitutive equations are identified with stress and strain data in order to describe the deformation behavior. Two kinds of behavior laws are used in the project, i.e., power law and Gavrus law. The power law which just include strain hardening exponent n and strain rate sensitivity exponent m can only fit well with experimental curves at the work hardening stage. Gavrus law including eight parameters and two parts, i.e., hardening and softening, can fit well with experimental curves at the hardening and softening stage despite of discrepancy. The genetic algorithm has been used to obtain the global optimal fitting parameters. The simple tensile test simulations are also performed in simulation to validate and prove the effectiveness of the models. pa st el -0 07 18 37 0, v er si on 1 16 J ul 2 01 2 Warm Nakazima tests with hemisphere punch are performed to study forming limits of AZ31 magnesium alloy. These tests are carried out with Dartec® hydraulic tension testing machine in laboratory. Six kinds of specimens are used and each specimen represents a strain path. Three temperatures and two test velocities are considered in these tests in order to analyze forming influence parameters. The ARAMIS strain measurement system is used to obtain the principal strains (major strain and minor strain). Three types of blanks are obtained after experiment, i.e., safe, necking and fracture specimens respectively. Finally, the FLD (Forming Limit Diagram) is obtained and the comparison distinctly shows that the formability is better at higher temperature. Then the experimental influence parameters have been taken into account in order to analyze their respective influence on formability, e.g., temperature, velocity, lubricant and strain path, etc. The detailed analysis results are presented in the thesis. Moreover, the forming limits predictions are performed in M-K model. The prediction FLD with M-K model have compared with experiment FLD at various temperature and imperfection status. It is clearly shown that the curves near the plane strain state fit much better, and the curves fit better at 300C. However, the tendency of experimental and theoretical FLD clearly indicates the same conclusion, i.e. the formability is better at higher temperature. Finite element simulation analysis is a powerful tool in the metal forming process and virtual manufacturing field. The simulation is more and more closed with reality following the development of theory and application. Firstly, the hemisphere punch deep drawing simulations are performed in FORGE® and ABAQUS®. Punch forces, temperature and thickness distributions are compared between simulations and experiments. The punch load results indicate that the simulation curves are higher than experimental curves. The temperatures located at the punch radius zone are higher than another zone during the process. In the thickness distribution, maximum thinning has been observed in punch radius zone for both simulation and experiment. However, less thickening and more thinning has been observed in the simulation as compared with experiments. In addition, the simulation conducted in FORGE and ABAQUS are compared in order to study the difference of various finite element simulation code. The comparison shows that the curve from simulation is higher than experimental curve. But the discrepancy between simulation and experiment is different in this two simulation software. The discrepancy increases with temperature in ABAQUS. Secondly, the damage behavior are studied in FORGE, the default damage model is Cockcroft & Latham model. But the damage prediction with this model is not precise because it does not consider the deformation history. Since the Lemaitre damage model with pa st el -0 07 18 37 0, v er si on 1 16 J ul 2 01 2 several damage parameter is introduced. The damage parameters obtained from warm tensile test simulation are used directly in deep drawing simulation based on the assumption that the damage mechanism is not variable with different forming process for same material. The damage values with deformation path are compared at 200C and 300C. It is clearly shown that the damage value is lower at higher temperatures, and there is no obvious fluctuation for damage value at each temperature. Finally, the cross-shaped deep drawing cup simulation which is a benchmark of NUMISHEET 2011 conference is performed with FORGE. The objective of this benchmark is to validate the capability of numerical simulation for a warm forming process. This warm forming process simulation is a coupled thermal-deformation analysis considering the effect of temperature and strain-rate on material properties. The punch load, thickness and temperature distribution are obtained and compared for each simulation. The meshing influence is also studied in simulation with various mesh sizes. In the punch load comparison, the punch loads have not much difference with various mesh size, and there is slight fluctuation for each punch force curve especially at high displacement. For the thickness and temperature distribution, the thickening occurs at flange zone and thinning at cup wall zone. The maximum thinning is observed at the die corner radius for both punch displacement. The temperature distributes gradually along the wall during forming process. And there are no obvious temperature changes at the punch radius and die radius zone. Furthermore, this benchmark simulation results (FORGE) are also compared with other various simulation software in conference, such as explicit method (LS-Dyna®, Radioss®, JSTAMP®, Dynaform®) and implicit method (ABAQUS, FORGE). The CPU time is also compared in this case, and the explicit method takes less time than implicit method. The detailed analysis results are presented in this thesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Numerical Investigation of Warm Deep Drawing Process of AA5052 Aluminum Alloy

Aluminum alloys have a high strength-to-weight ratio and proper anti-corrosion properties that are used in the automotive, shipbuilding and aerospace industries. The major problem with forming aluminum sheets is the low formability of aluminum sheets at room temperature. Therefore, in the present study, warm deep drawing (WDD) of AA5052-O aluminum alloy sheets with a thickness of 1mm was invest...

متن کامل

The Effects of Forming Parameters on the Single Point Incremental Forming of 1050 Aluminum Alloy Sheet

The single point incremental forming (SPIF) is one of the dieless forming processes which is widely used in the sheet metal forming. The correct selection of the SPIF parameters influences the formability and quality of the product. In the present study, the Gurson-Tvergaard Needleman (GTN) damage model was used for the fracture prediction in the numerical simulation of the SPIF process of alum...

متن کامل

Investigating the Effects of Cold Bulge Forming Speed on Thickness Variation and Mechanical Properties of Aluminum Alloys: Experimental and Numerical

In this work, cold bulge forming of an Aluminium-Magnesium (Al-Mg) sheet with a solid bulging medium is performed experimentally and numerically.  Mechanical properties and thickness variations of Al-Mg sheet are evaluated before and after the forming process.  The results indicated that the Al-Mg sheet has taken the desired shape without necking using the cold bulge forming process.  Also, the...

متن کامل

Numerical and Experimental Investigations on Springback of U-bending of DP600 Steel Alloy Sheet

The most prominent feature of sheet material forming process is an elastic recovery phenomenon during unloading which leads to springback and side wall curl. Therefore evaluation of springback and side wall curl is mandatory for production of precise products. In this paper, the effects of some parameters such as friction coefficient, sheet thickness, yield strength of sheet and blank-holder fo...

متن کامل

Effect of different yield functions on computations of forming limit curves for aluminum alloy sheets

In this article, the effect of different yield functions on prediction of forming limit curve (FLC) for aluminum sheet is studied. Due to importance of FLC in sheet metal forming, concentration on effective parameters must be considered exactly in order to have better theoretical prediction comparing experimental results. Yield function is one of the factors which are improved by adding new coe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012